x^2/x+5+10=25/x+5

Simple and best practice solution for x^2/x+5+10=25/x+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2/x+5+10=25/x+5 equation:



x^2/x+5+10=25/x+5
We move all terms to the left:
x^2/x+5+10-(25/x+5)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: x+5)!=0
x∈R
We add all the numbers together, and all the variables
x^2/x-(25/x+5)+15=0
We get rid of parentheses
x^2/x-25/x-5+15=0
We multiply all the terms by the denominator
x^2-5*x+15*x-25=0
We add all the numbers together, and all the variables
x^2+10x-25=0
a = 1; b = 10; c = -25;
Δ = b2-4ac
Δ = 102-4·1·(-25)
Δ = 200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{200}=\sqrt{100*2}=\sqrt{100}*\sqrt{2}=10\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10\sqrt{2}}{2*1}=\frac{-10-10\sqrt{2}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10\sqrt{2}}{2*1}=\frac{-10+10\sqrt{2}}{2} $

See similar equations:

| 7-u/5=10 | | 6v-99=4v-51 | | k/4-71=-62 | | j/4+29=22 | | 29-13=2(x-7) | | x=-2,1,4 | | s/3-1=7 | | a-3/7-2(a-4)/8=5a+10/4 | | 6c-98=2c-18 | | a=39-13-17 | | (8/19)*x=16 | | 200m=12m+644 | | x*28=16 | | k=51/3 | | p=13+17+9 | | 14=2−6t | | p=13+17= | | 5x-|9-7x|=3 | | 2/30=x/50 | | 2-y/3-1-y/2=y | | 7x-15=32 | | X/2+x+1/3+x+3/4=16 | | 8y+6=10 | | 3.5=a/0.2 | | 27=3(b-66) | | 4(x-5)=2- | | -(3x+1)=-2x+7 | | 4(x-2)=3(x-1)+x-5 | | (3x+5)^3=64 | | 4x+10=6× | | 3f(-1)=-4f(6) | | 37y=4(9y-5) |

Equations solver categories